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This paper presents a new Dynamic Finite Element (DFE) formulation for the
vibrational analysis of spinning beams. A non-dimensional formulation is
adopted, and the frequency dependent trigonometric shape functions are used to
find a simple frequency dependent element stiffness matrix which has both mass
and stiffness properties. An appropriate bisection method, based on a Sturm
sequence root counting technique, is used and the flexural natural frequencies of
cantilevered beams, for a variety of configurations, are studied. The results are
compared to those found by the Dynamic Stiffness Matirx and the classical Finite
Elements Method, using ‘‘Hermite’’ beam elements. Much better convergency
rates are found using the proposed DFE method.
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1. INTRODUCTION

The computation of natural frequencies and mode shapes are important elements
in the dynamic analysis of rotating (centrifugally-stiffened) beams. The refinement
of formulation techniques has led to the development of many studies on the
vibration of rotating radial beams having different root offset configurations. This
has been set in a variety of contexts ranging from turbomachinery blading and
helicopter blades to gyroscopic instruments and flexible appendages on spinning
spacecraft, etc. Numerous investigators have studied such structures and a variety
of methods are proposed [1–14]. Some good literature surveys were presented on
several occasions in the literature (see for example reference [8]). One can also find
in reference [15] a review of several approximate methods such as the Mykelstad
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method, the Galerkin method, the Rayleigh–Ritz method, the finite element
method, etc.

1.1.    ()

The Finite Element Method (FEM), where beam element matrices are evaluated
from assumed fixed shape functions, has been used by numerous investigators
[6–10]. In standard FEM formulations, because of their completeness and ease of
manipulation, polynomial shape functions are often used. The employment of
polynomial shape functions, in this case, results in approximate equations in the
form of mass and static stiffness matrices. However, in this case, the free vibrations
analysis of a rotating beam, leads to the eigenvalue system

([K]−v2[M]){w}=[KDS ]{w}= {0}, (1)

which is linear in v2, and can be solved by different numerical methods. See, for
example, reference [16].

A deviation from this practice will pay dividends if improved accuracies can be
obtained by using shape functions other than polynomials. This is the case when
the homogeneous solution of the pertinent differential equation is available for the
development of each element matrix. For static analysis, use of the homogeneous
solution of the differential equation yields the exact stiffness matrix and load vector
for an element [17].

1.2.    () 

For the dynamic analysis, a similar procedure, leading to only one matrix [called
the Dynamic Stiffness Matrix (DSM)], which has both mass and stiffness
properties, may be used. The DSM approach has been applied to the vibration
analysis of rotating beams on different occasions [11–14], but the terminology
DSM is much older [18–21]. In this case, the homogeneous solution, and hence
also the dynamic stiffness matrix, become frequency dependent. Then, the
resultant eigenvalue problem is written in the form

[KDS (v)]{w}= {0} (2)

which is no longer a linear relationship.
The DSM method has certain advantages over the conventional finite element

method, particularly when higher frequencies and better accuracies of results are
required. Often, the properties obtained from the DSM method are based on the
closed form analytical solution of the differential equation of the element and
hence are justifiably called ‘‘exact’’, if the differential equation can be solved
exactly [22]. However, ‘‘exact’’ equations exist for important structures, such as
plane frames, grids, and many plate and shell problems, which incorporate
dynamic functions. The exact member equations DSM are then used to assemble
the overall DSM, KDS , of the structure. The elements of KDS are thence
transcendental functions of circular frequency. Hence, to solve the resultant
eigenvalue problem (2), which is a non-linear one, appropriate algorithms have to
be used.
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A method based on the Sturm sequence root counting technique was first
presented by Wittrick and Williams [20] to find the natural frequencies of elastic
structures. This method has been developed previously, in specific contexts of
prismatic plate assemblies [21] and plane frames [19]. Subsequently it was
demonstrated as a unified method for buckling and vibration problems. The
method has been used and adapted extensively, to cover numerous specific
problems. For the axially loaded Timoshenko members, considering a uniform
distribution of the mass, the exact DSM is presented by Howson and Williams
[11] in which the effect of axial load, rotary inertia and shear deflection may be
accounted for.

A theorem was presented by Wittrick and Williams [12] which can be used for
the systematic calculation of the natural frequencies of either a discrete system
which is assembled from sub-structures, or an assembly of distributed mass
members. The application of the theorem to a spinning two-dimensional frame,
with distributed mass members, was discussed where the constituent members were
considered to be straight, uniform Bernoulli–Euler beams. When the Timoshenko
members are considered, the DSM presented by Howson and Williams [11] can
be used as the principal block in the calculation of natural frequencies of spinning
frames. An exact Bernoulli–Euler DSM for a range of tapered beams, was
presented by Banerjee and Williams [23], and Banerjee and Fisher [22] presented
the coupled bending-torsional DSM for axially loaded beam elements. Reference
[24] presented a very good and complete literature survey of numerous problems
treated by the DSM method.

However, in all of these cases, the governing differential equations can be solved
exactly. But it implies, sometimes, mathematical procedures which are difficult to
deal with, and/or are limited to special cases (as in the case of Banerjee and
Williams [23] for a range of tapered beams, where the Bessel functions are used).

In a large number of vibration problems, the pertinent governing differential
equations have variable coefficients which makes it impossible to solve them
exactly. Hence, some simplifying assumptions have to be considered to change the
governing differential equations by introducing constant coefficients. For example,
let us consider a spinning two-dimensional frame, with distributed mass members,
where the constituent members were considered to be straight, uniform,
Bernoulli–Euler beams. In such a case, an expedient way of dealing with a member
with varying axial force (T) would be to break it down into several members,
joined end to end, with such length that they can all presumably have constant
force T [12]. Reference [13], presenting a general computational technique for the
accurate analysis of forced vibration of rotating linear structures, follows also the
same principle. Within each beam element, in that case, the axial force is taken
as constant and equal to the mean value of the true centrifugal sectional force in
that element. Then assembling the DSMs, obtained by ‘‘exact’’ member equations,
the overall stiffness matrix is found.

1.3.    () 

Let us consider a tapered beam, rotating at a constant angular velocity about
an axis at one end, and vibrating laterally. The variable coefficients, in this case,
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are due to the non-uniform geometry and the centrifugal force which varies along
the beam. To change the corresponding differential equations to those with
constant coefficients, the beam will have to be broken down into members of
unifom geometry and with such length that they can all presumably have constant
force T. Then, as it will be seen later, when calculating the first natural frequencies
for a specified precision, the DSM method takes approximately the same effort
as in the FE method (see Figures 6–11). However, in this case, the DFE method
can be advantageously exploited. The DFE method can be considered as a
combination of two methods; the well known formulation procedure as in the
FEM is adopted to provide a general tool, and the advantages of the DSM method
are retained by choosing the weighting functions, shape functions, etc., referring
to an appropriate exact member equation. The details of this procedure are
described in the theory. A similar approach has been already applied by the
authors, to the vibrational analysis of linearly tapered beams [25] and that of
rotating uniform beams [26] and that of spinning linearly tapered beams [27].

An Euler–Bernoulli beam rotating about a fixed axis in space undergoing
bending motion in a plane fixed in a reference system rotating with the beam is
considered. The plane, in which the beam is bending, makes an angle u with the
rotating vector. The development of the DFE for lateral free vibration of a
rotating beam is presented. Then, the method of incorporating the derived element
matrices in a computer program is discussed with a particular reference to the
established Williams–Wittrick algorithm. The application of the theory is
demonstrated by the results obtained for a variety of configurations of rotating
cantilever beams. As the elementary Bernoulli–Euler beam theory is used, the
derivation assumes that rotary inertia and shear deflection are neglected.

2. MATHEMATICAL MODEL

Let us consider an Euler–Bernoulli beam rotating in space and undergoing
bending motion in a plane fixed in a reference system rotating with the beam
(Figure 1). The beam is assumed to be inextensible and the shear and mass axes
are assumed to be coincident. The plane in which the beam undergoes pure
bending makes an angle u with the rotating vector. For u=0, the motion is purely
out-of-plane (flapping); for u= p/2 the motion is purely in-plane (lead-lag).

Figure 1. Geometry of rotating beam.
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Figure 2. Domain discretized by a number of 2-node elements.

According to D’Alembert’s principle, the total force per unit volume acting on
the beam in the w direction is given by Hoa [9]:

F2 = r(w,tt −V2 sin2 uw). (3)

The corresponding differential equation of motion (for the centrifugally stiffened
beam) is written as

[Hfy (x)w,xx −[T(x)w,x ],x +m(x)(w,tt −V2 sin2 uw)=0, (4)

and

dT
dx

+V2m(x)(x0 + x)=0 or T(x)=V2 g
L

x

m(s)(x0 + s) ds. (5)

Appropriate boundary conditions are imposed at x=0, L. For example:

Clamped: x=0; w=w'=0,

Free: x=L; w0=0; [Hfy (x)w,xx ],x −T(x)w,x =0, etc.

Equation (5) represents the centrifugal force acting along the beam, and x0

represents the offset (the radius of the rotor on which the beam is mounted). For
a vibration problem we suppose

w(x, t)=w(x) exp(ivt), (6)

where v represents the natural vibration frequencies. Substituting equation (6)
into equation (4) we obtain

[Hfy (x)w,xx ],xx −[T(x)w,x ],x −m(x)v2w−m(x)V2 sin2 uw=0. (7)

The Galerkin type weak form associated to equations (4) is

W=g
L

0

{Hfy (x)dw,xxw,xx +T(x)dw,xw,x −m(x)v2dww−m(x)V2 sin2 udww} dx

+[Hfy (x)(dww,xxx − dw,xw,xx )−T(x)dww,x ]L0 =0. (8)

For clamped-free boundary conditions: dw= dw'=0 at x=0, and force terms
are zero at x=L. Here, w is a solution function and dw is a test function. Both
quantities are defined in the same approximation space.

If the domain is discretized by a number of 2-node elements [28], we have (see
Figure 2)

W=WINT −WEXT = s
NE

k=1

Wk −WEXT =0, (9)
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where

Wk =g
xj+1

xj

{Hfy (x)dw,xxw,xx +T(x)kdw,xw,x −m(x)v2dww

−m(x)V2 sin2 udww} dx. (10)

Each element is defined by nodes j, j+1 with corresponding coordinates and the
centrifugal force, for element k, is defined as

Tk (x)=V2 g
lk

x

m(x)(x0 + x) dx+Tk−1(0). (11)

The relation Wk may also be written in an equivalent form obtained after two
integration by parts on each element:

Wk =g
xj+1

xj

w{(Hfy (x)dw,xx ),xx −(T(x)kdw,x ),x −m(x)v2dw

− m(x)V2 sin2 udw} dx+[dw,xxHfy (x)w,x

− (dw,xxxHfy (x)−T(x)kdw,x )w]xj+1
xj

. (12)

The admissibility condition for finite element approximation is controlled by
equations (8). The approximation for w, dw is of e1-type, assuring continuity of
w and w,x at each node. Equation (12) presents simply another way of evaluating
equations (11) at the element level.

2.1.    () 

The classical Finite Element (FE) model is found by using Hermite type
polynomial approximation as

w(x)=N1(x)w1 +N2(x)w1,x +N3(x)w2 +N4(x)w2,x (13)

where w1 and w2 are nodal values at node j, j+1, corresponding to flexural
displacements. Identical approximation is chosen for dw. The discretized
representation of equation (8) is then obtained as:

s
NE

k=1

Wk =WEXT

which for the free vibration leads to:

[K]{wn}− l[M]{wn}= {0}. (14)

This is a classical linear eigenvalue problem which is solved using an inverse
iteration, subspace or Lanczos method [16].
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2.2.    ()

In some cases, one can obtain the DSM model in a manner different from the
usual approaches. In fact, there is a possibility of obtaining the same DSM model
by following the finite element formulation pattern, if approximation space is
defined by frequency dependent hyperbolic functions.

Let us consider the case for which all parameters are constant over the element
space: Hfy (x), T(x), m(x), etc. One can then choose the interpolation functions
Ni (x, v̂) which are solutions of integral terms of equation (12):

Hfydw,xxxx −Tdw,xx − a2dw=0 (15)

or

HfyNi,xxxx −TNi,xx − a2Ni =0, (16)

where

a2 =m(x)(v2 +V2 sin2 u) (17)
zXcXv

v̂2

and Ni respect the nodal properties: e.g., N1 =1, N1,x =0 at x= xj ;
N1 =0, N1,x =0 at x= xj+1; etc.

Equation (12) can also be rewritten in the following non-dimensionalized form
which is simply another way of evaluating this equation at the ‘‘reference element’’
level (Figure 3):

Wk
ND =g

1

0 0gk

l�3
k
dw2−0tk

l�k
l21dw0− m2m̄kl�kdw1w dj

+
gk

l�3
k

[dw0w'− dw1w]10 +
tk

l�k
l2[dw'w]10, (18)

where prime (') denotes differentiation with respect to j.
The interpolation functions, in this case, are obtained as follows.
First, using generalized parameters, the solution function w, and the test

function dw, are written as

dw(j)= �P(j)� ( {da}, w(j)= �P(j)� ( {a}, (19)

Figure 3. A 2-node reference beam element of four degrees of freedom.
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where the basis functions of the approximation are

�P(j)�=Wcos (aj);
sin (aj)

a
;
cosh (bj)− cos (aj)

a2 + b2 ;
sinh (bj)− sin (aj)

a3 + b3 w (20)

which are solutions of integral terms of equation (18), and, in addition, they are
chosen in a such manner to lead to classical basis functions of the standard
‘‘Hermite’’ beam element as a, and b:0. Here,

a, b=
1

[2 ( A]1/2 {−B2 [B2 −4A ( C]1/2}1/2, (21)

where

A=
gk

l�3
k
, B=−0tk

l�k
l21, C=−m2m̄kl�k .

Note that the generalized parameters of the approximation have, in general, no
direct physical meaning. Thus, �da� and �a� are more conveniently replaced by
nodal variables �dw1; dw'1 ; dw2; dw'2�, and �w1; w'1 ; w2; w'2�, respectively. To this
end, regarding equation (19), one can write:

{dwn}=[Pn ] ( {da}, {wn}=[Pn ] ( {a}, (22)

where

[Pn ]=

1 0 0 0

0 1 0
(b− a)
(a3 + b3)

.G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

cos (a)
sin (a)

a

[cosh (b)− cos (a)]
(a2 + b2)

sinh (b)− sin (a)]
(a3 + b3)

−a sin (a) cos (a)
[b sinh (b)+ a sin (a)]

(a2 + b2)
[b cosh (b)− a cos (a)]

(a3 + b3)

(23)

Then, from equations (19), (22) and (23) the approximations in nodal variables
can be written as

dw(j)= �P(j)�[Pn ]−1{dwn}= �N(j)�{dwn},

w(j)= �P(j)�[Pn ]−1{wn}= �N(j)�{wn}, (24)
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where

�N�= �N1(j, v̂); N2(j, v̂); N3(j, v̂); N4(j, v̂)�

represent the frequency dependent dynamic shape functions, mentioned earlier.
Equations (24) represent simply another way of writing equations (19) in nodal

form. It can be easily shown that the dynamic shape functions �N� also satisfy
the integral terms of equation (18). They are found to be

N1(j, v̂)=
(ab)
D

( {−cos (aj)

+ cos (a(1− j)) ( cosh (b)+ cos (a) ( cosh (b(1− j))

− cosh (bj)−
b

a
( sin (a(1− j)) ( sinh (b)

+
a

b
( sin (a) ( sinh (b(1− j))},

N2(j, v̂)=
1
D

( {b ( [cosh (b(1− j)) ( sin (a)

− cosh (b) ( sin (a(1− j))− sin (aj)]

+ a ( [cos (a(1− j)) ( sinh (b)

− cos (a) ( sinh (b(1− j))− sinh (bj)]},

N3(j, v̂)=
(ab)
D

( {−cos (a(1− j))

+ cos (aj) ( cosh (b)− cosh (b(1− j))

+ cos (a) ( cosh (bj)−
b

a
( sin (aj) ( sinh (b)

+
a

b
( sin (a) ( sinh (j)},

N4(j, v̂)=
1
D

( {b ( [−cosh (bj) ( sin (a)

+ sin (a(1− j))+ cosh (b) ( sin (aj)

− a ( [cos (aj) ( sinh (b)

+ sinh (b(1− j))+ cos (a) ( sinh (bj)]}

and

D=(ab) ( {−2 ( (1−cos (a) ( cosh (b))+0a2 − b2

ab 1 ( sin (a) ( sinh (b)}. (25)
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Using expressions (25) the discretized approximation of equation (18) is obtained
as

Wk
ND = �dwn�[KDS ]k ( {wn}, (26)

where the dynamic stiffness matrix is now

[KDS ]k =
gk

l�3
k

[{N1}0 {−N0}0{−N1}1{N0}1]

+0tk

l�k
l21[{−N'}0{0}{N'}1{0}]. (27)

The assembled model of equation (8) is then obtained as

W= s
NE

k=1

Wk =[KDS (v̂)]{wn}=0. (28)

This is a non-linear eigenvalue problem which is solved using a bisection method
proposed by Wittrick and Williams described on several occasions in the literature
[19, 20, 29, 30].

The stiffness matrix found by this approach is based on the closed form
analytical solution of the differential equation of the element and hence, gives
justifiably the ‘‘exact’’ results. This stiffness matrix is found to be identical to the
‘‘exact Dynamic Stiffness Matrix (DSM)’’ presented by Howson and Williams [11].

The frequency dependent dynamic shape functions of equations (25)
corresponding to a rotating uniform beam element, are shown in Figure 4. The
effect of frequency changes on the form of these shape functions is demonstrated
in these figures. The rotating speed is assumed to be the same for all cases
(V=12 rad/s). In addition, the effect of the spinning speed on the form of the
dynamic shape functions was studied. As it can be observed in Figure 5, when the
rotating velocity of the beam increases, the shape functions’ amplitude decreases.
(The fourth dynamic shape function of the same uniform beam element as in
Figure 4 is presented here.) It can be explained by the stiffening effect of the
centrifugal force due to the spinning speed.

2.3.    () 

When coefficients Hfy (x), T(x), m(x), etc. are not constant, it becomes difficult
and cumbersome or even impossible to obtain the exact model as presented in the
preceding section. The approximation space, in this case, depends on the nature
of the space variation of these parameters. In this study we propose an
intermediate approach, where the interpolation functions are obtained with
averaged value parameters over each element. The influence of the parameter
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Figure 4. The variation of the dynamic shape functions Ni vs frequency changes for a rotating
uniform beam; E=1 GPa, A=1 m2, L=1 m, r=1 kg/m3, I=1 m4, V=12 rad/s. (a) N1; (b) N2;
(c) N3; (d) N4; —×—, v1, 1st natural frequency; —r—, v2, 2nd natural frequency; —(—, v3, 3rd
natural frequency; —e—, v4, 4th natural frequency.

variation is taken into account by rewriting the virtual elementary work of
equations (11) as

Wk =g
xj+1

xj

{Hfydw,xxw,xx +Tdw,xw,x −mv̂2dww} dx

+g
xj+1

xj

{−(Hfy −Hfy (x)) dw,xxw,xx −(T−T(x)) dw,xw,x

zXVZXv zXcXv
HfyDEV TDEV

+(m−m(x)) v̂2dww} dx (29)
zXcXv

mDEV

which contains two parts: the first part is the same as the elementary virtual work
associated to an assumed axially loaded uniform beam of constant parameters.
The second part represents the influence due to the space variation of centrifugal
force and geometrical parameters.
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After two integration by parts, equation (29) can be written in the following
non-dimensionalized form which is simply another way of evaluating this equation
at the ‘‘reference’’ level:

Wk
ND =g

1

0 0gk

l�3
k
dw2−0tk

l�k
l21dw0− m2m̄kl�kdw1 w dj

zXXXXXXcXXXXXXv
(*)

+
gk

l�3
k

[dw0w'− dw1w]10 +
tk

l�k
l2[dw'w]10 +DEV., (30)

where

DEV.=−01l�3
k1 g

1

0

(gDEVw0dw0) dj

−0l2

l�k1 g
1

0

(tDEVv'dw') dj

+(m2l�k ) g
1

0

(m̄DEVwdw) dj. (31)

Figure 5. The change of the fourth dynamic shape function, N4, at the third natural frequency,
v3, vs spinning speed (the same rotating uniform beam as in Figures 4 in considered). —×—,
V=4 rad/s; —r—, V=8 rad/s; —(—, V=12 rad/s.
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Then, the approximation functions found in the preceding section are used which
make the expression (*) become zero, and the finite element model leads to

Wk
ND = �dwn�[KDS ]k ( {wn}, (32)

where

[KDS ]k =[KDS ]kAverage +[KDS ]kDEV (33)

and

[KDS ]kAverage =
gk

l�3
k

[{N1}0{−N0}0{−N1}1{N0}1]

+0tk

l�k
l21[{−N'}0{0}{N'}1{0}], (34)

(KDSij )k
DEV =−01l�3

k1 g
1

0

gDEV.N0i N0j dj

−0l2

l�k1 g
1

0

tDEV.N'i N'j dj

+(m2l�k ) g
1

0

m̄DEV .NiNj dj. (35)

It can be readily verified from equations (27) and (34) that the second terms in
both equations reduce to zero when l=0, i.e., when the beam does not rotate.
Thus, the degenerated stiffness matrix of equation (34) becomes that of a
non-uniform Bernoulli–Euler beam [25], whereas equation (27) changes to the
stiffness matrix corresponding to a uniform Bernoulli–Euler beam presented on
several occasions in the literature [19, 20, 30]. Neglecting the deviatoric terms due
to the geometric parameters, but retaining lq 0, the stiffness matrix of equation
(34) becomes that of centrifugally stiffened uniform beams [26]. Further more, the
resultant stiffness matrix will be similar to the case presented by Howson and
Williams [11], if all of the deviatoric terms are neglected.

It can be also verified that when v:0, for the case of non-rotating beams, the
functions of expression (20) become 1; x; x2; x3, respectively, which are the
expansion terms in the formulation of the ‘‘Hermite’’ beam element, in
conventional finite element method. In this case, the shape functions of equations
(25) become the corresponding shape functions, and therefore, the dynamic
stiffness matrix of equations (27) and (34) change to a static stiffness matrix of a
‘‘Hermite’’ beam element [28].
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3. APPLICATION OF THE THEORY

The expressions for the DFE stiffness matrix derived in the previous sections
can be directly exploited to compute the natural frequencies of centrifugally
stiffened beams. Elementary matrices will have to be assembled in the usual way
to form the overall dynamic stiffness matrix [KDS ] of the final structure. The
determination of the natural frequency then follows from the assembled dynamic
stiffness matrix [KDS ] and the well-known Wittrick–Williams algorithm described
on several occasions in the literature [19, 20, 29, 30].

Suppose that v denotes the circular frequency of the beam. Then it is known
that the number of natural frequencies, j, lying between v=0 and v=v* is given
by [20]

j= j0 + s{KDS}, (36)

where [KDS ] is the overall dynamic stiffness matrix (which is v dependent) of the
structure, evaluated at v=v*; s{KDS} is the number of negative elements on the
leading diagonal of Kr

DS ; Kr
DS is the upper triangular matrix obtained by applying

the usual form of Gauss elimination to KDS and j0 is the number of natural
frequencies of the beam still lying between v=0 and v=v* when the
displacement components to which KDS corresponds are all zero (the beam can still
have natural frequencies when all its nodes are clamped, because the presented
formulation allows each individual element to have an infinite number of degrees
of freedom between nodes). Thus

j0 = s
EN

m=1

jm , (37)

where jm is the number of natural frequencies between v=0 and v=v* for an
element with its ends clamped, while the summation extends over all elements. For
the element stiffness matrix developed in this paper, the clamped-clamped
frequencies of an individual element occur when one or more of the components
of the matrices of equations (34) and (35) become infinite, and this will occur when
D=0, where D is the denominator expression in equation (25) and it is exactly
the same equation as the case of a clamped–clamped axially loaded uniform beam
element. Clearly, it is a difficult task to find the component of jm arising from
equation (25). However, since these roots are the natural frequencies of the beam
which involve bending they can be easily obtained as described here. Consider a
simply supported beam with moments applied at its ends. With this simply
supported beam treated as a complete structure, for which the stiffness matrix is
B, it is shown by Howson and Williams [11] that

jm = jc − s{B}, (38)

where jc is the number of natural frequencies of the simply supported beam
exceeded by v*. Thus, exploiting the relations in equations (36–38), it is possible
to converge on any required natural frequency given the fact that the expressions
for the DFE stiffness matrix and the clamped-clamped natural frequencies are
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Figure 6. Convergency test, resulting from three different methods, for a cantilever uniform beam;
the first three natural frequencies (mi ) of the flapping vibrations (u=0) for a constant spinning speed
(l=6) is considered; —+—, m1 by FE; ----, m1 by DSM; —e—, m1 by DFE; —(—, m2 by FE; –·–·–,
m2 by DSM; —r—, m2 by DFE; —×—, m3 by FE; ———, m3 by DSM; —q—, m3 by DFE.

known. Then, the mode shapes are calculated by using equation (2). The procedure
explained here is implemented in a conventional finite element computer program
called RE � FLEX [31] to obtain the results given in the next section.

4. NUMERICAL RESULTS

Some examples of the formulation presented in this paper are treated in this
section. The following parameters were utilized in all of the examples of uniform
beams: E=200 GPa, r=1000 kg/m3, cross-sectional area=0·012 m2, second
moment of area (I)=0·00001 m4, and the beam length is assumed to be (L)=1 m.

4.1.        u=0

Based on the theory presented in this paper, non-dimensional numerical results
were obtained for the case of a cantilever uniform beam rotating at different
speeds, and undergoing the out-of-plane (flapping) vibrations. The convergency
rates for the first three non-dimensionalized natural frequencies (mi ) as a function
of the number of equal length elements and for l=6 are shown in Figure 6. The
comparison were made between the results obtained by the presented DFE
method, exact DSM method and those found by the conventional FEM, where
the natural frequencies obtained by using 200 uniform classical ‘‘Hermite’’ finite
beam elements were taken as reference values. Excellent agreements were found
between these values and similar published results in reference [8], which justifies
the use of these results as exact values.
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In the FE model, the centrifugal force due to the rotating speed, is modelled
as a preload by introducing the appropriate geometric stiffness matrix (see, for
example, references [18] and [16]). The results due to the DSM method, in this case,
are found by using the exact element of reference [11], when the rotary inertia and
shear deformation are neglected. The axial force in both of the DSM and the
conventional FEM models, is considered to be constant per element and it is
assumed to be equal to the average value of the centrifugal force along each
element.

As is can be observed, both of the classical FE and exact DSM methods lead
to approximately the same convergency rates (the results, for the first and the third
natural frequencies, are coincident; for the second one, the DSM method leads to
a convergency rate which, for small number of elements, seems to be higher than
the FEM, but when the number of elements is increased, both of them lead to
similar results). As illustrated in Figure 6, much better convergency rates are found
by the presented DFE method. Hence, for the rest of the following tests described
in this section, further comparisons with the DSM method will be omitted.

In Figure 7, are shown the convergency rates for the first non-dimensionalized
natural frequency (m1) as a function of the number of equal length elements,
incorporating different rotating speeds (l=1, l=6 and l=12, respectively).
Results similar to the preceding test were found.

The effect of eccentricity on the eigenfrequencies can also be considered. The
stiffness characteristics of a rotating beam may also be modified by increasing the
steady state internal preload due to the offset (the radius of the rigid rotating base
on which the beam is mounted). The DFE method is exploited in the case of the

Figure 7. Convergency test, resulting from the classical and Dynamic finite element methods, for
a cantilever uniform beam; the first natural frequency (m1) of the flapping vibrations (u=0) for
different spinning speeds; —+—, FE for l=1; —e—, DFE for l=1; —(—, FE for l=6; —r—,
DFE for l=6; —×—, FE for l=12; —q—, DFE for l=12.
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Figure 8. The effect of eccentricity (offset radius) on the first three natural frequencies of the
out-of-plane vibrations of the cantilever uniform beam. —+—, 1st mode for X0=0; —e—, 1st
mode for X0 =1; —P—, 2nd mode for X0=0; —r—, 2nd mode for X0=1; —×—, 3rd mode for
X0 =0; —q—, 3rd mode for X0=1.

uniform beam with an offset radiu x0 =1 m. The results obtained for the first three
eigenfrequencies for x0 =0 and x0 =1 are shown in Figure 8, where the stiffening
effect of the eccentricity is well illustrated.

4.2.        u= p/2

Let us consider the case of the in-plane (lead-lag) vibration of a uniform
cantilever beam rotating at a constant angular velocity. The same parameters as
in the previous example are utilized, and the following simulations are performed.
First, the effect of centripetal acceleration [4] on the eigenfrequencies of the beam
is studied. The comparisons were made between the results obtained by taking into
account the centripetal acceleration term and those obtained when just the preload
(centrifugal force) is considered. The corresponding results for the first natural
frequency, obtained by the DFE method, are shown in Figure 9. Including the
preload effects due to the centrifugal force field results in the well known
‘‘stiffening’’ effect. Combining the contribution due to centripetal acceleration with
the influence of the preload slightly counteracts the stiffening effects of the preload
[4]. The trends given in Figure 9 may be explained with the equations of motion
presented earlier. Then, the convergency rates for the first four non-dimensional-
ized natural frequencies (mi ) as a function of the number of equal length elements
and also for l=6 are shown in Figure 10. The comparison was made between
the results obtained by the DFE method and those found by the conventional
FEM. Once more, much better convergency rates were obtained by the DFE
method.
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4.3. --      

The most general form of this theory is applied to the case of a cantilever,
linearly tapered beam rotating at different speeds. For a group of cross-sections
[23, 27] the taper, in two directions along the axial length, can be presented as

h(x)= hr01+ c1
x
L1

n

, b(x)= br01+ c2
x
L1

m

,

A(x)=Ar01+ c1
x
L1

n

01+ c2
x
L1

m

, I(x)= Ir01+ c2
x
L1

m

01+ c1
x
L1

n+2

.

where h, A, I are the width, thickness, cross-section area and second moment of
area, respectively; c1 and c2 are constant which must be q−1 because otherwise
the beam tapers to zero between its extremities; for the case of a linear taper, n
and m are usually 0 or 1; and subscript r denotes a value which is chosen as a
reference. The Young’s modulus, E, and density, r, of the member are assumed
to be constant, and the length of the member is L. Here, a rotating linearly tapered
beam is considered, where the width is assumed to be constant (m=0 (or c2 =0),
c1 =−1/2 and n=1).

Figure 11 presents the comparison made between the convergency rates
obtained by the ‘‘exact DSM method’’, the conventional FEM and the DFE

Figure 9. The effect of the centripetal acceleration on the first natural frequency of in-plane
vibrations of the cantilever uniform beam. —+—, preload; —e—, preload plus centripetal
acceleration.
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Figure 10. Convergency test for first four in-plane (lead-lag) natural frequencies (u= p/2) of a
cantilever uniform beam and for l=6: ——, m1 by FE; ----, m1 by DFE; —P—, m2 by FE; —r—,
m2 by DFE; —×—, m3 by FE; —q—, m3 by DFE; —+—, m4 by FE; —e—, m4 by DFE.

Figure 11. Comparison between the rates of convergence obtained by the DFE method and the
corresponding results obtained by the conventional FE and the exact uniform DSM methods, for
a rotating cantilever linearly tapered beam, m=0, n=1, c1 =−1/2 and for l=6: —+—, m1 by
FE; —e—, m1 by DSM; ----, m1 by DFE; —P—, m2 by FE; —r—, m2 by DSM; -·-·-·, m2 by DFE;
—×—, m3 by FE; —q—, m3 by DSM; –––, m3 by DFE.
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Figure 12. Comparison between the rates of convergence obtained by the DFE method and the
corresponding results obtained by the conventional FE method, for a rotating cantilever linearly
tapered beam; m=0, n=1, c1 =−1/2 for l=1, l=6 and l=12. —P—, m1 by FE; ----, m1 by
DFE; —r—, m2 by FE; · · · ·, m2 by DFE; —×—, m3 by FE; -·-·-·-, m3 by DFE; —q—, m4 by FE;
—w—, m4 by DFE; —+—, m5 by FE; ——, m5 by DFE; —e—, m6 by FE; –––, m6 by DFE.
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method, for a constant rotating speed (l=6). The tapered cantilever beam, in this
case, is discretized by ‘‘exact’’ uniform beam members and by uniform ‘‘Hermite’’
finite beam elements. The axial force in both of the DSM and the conventional
FEM models, is considered to be constant per element and equal to the average
value of the centrifugal force along each element. Where as in the DFE model,
the variable centrifugal force is appropriately introduced.

The natural frequencies obtained by using 200 uniform classical ‘‘Hermite’’
finite beam elements, were taken as exact reference values, and the results are
compared to them. Excellent agreements were, once more, found between these
values and similar published results in reference [8], which justifies the use of these
results as exact values. As it can be observed, for the first three natural frequencies,
the same convergency rates, are obtained by the DSM approach and conventional
FEM. As it is illustrated, for the first and third natural frequencies, much better
convergency rates are found by the presented DFE method, where as for the
second natural frequency, the difference between the presented method and two
other methods, is less pronounced. Since both of the classical FE and exact DSM
methods lead, generally, to approximately the same convergency rates, for the rest
of the following tests due to the beams of tapered geometry, further comparisons
with the DSM method was not necessary.

Figure 12(a), (b) and (c) show, respectively, the convergency rates for the first
six and four natural frequencies (mi ) as a function of the number of equal length
elements, for different rotating speeds (l=1, l=6 and l=12; respectively). As
it can be observed from the illustrated results, also for higher modes and spinning
speeds, the DFE method, generally, lead to much better convergency rates. The
same procedure can also be applied to analyze the lead-lag vibrations of the
tapered beam.

5. CONCLUSION

A new DFE formulation to calculate the natural frequencies and mode shapes
of Euler–Bernoulli rotating beams is presented. Explicit expressions for the
frequency dependent trigonometric shape functions are derived. An expression for
the natural frequencies of a member with constrained ends is also presented.
Exploiting the developed model, together with an established algorithm [19], the
lateral free vibration analysis of some configurations of uniform and linearly
tapered rotating beams has been demonstrated. Numerical results, for various
cases, showed approximately the same convergency rates for both ‘‘exact’’ DSM
and FE models, where as, generally, much better results are found by the proposed
method.

The DFE method can also be extended to more complex problems such as
rotating beams with concentrated masses and the coupled vibration of beams and
the assemblies made of beam elements.

On the other hand, it will be possible to take into account the effects of shear
deformation and rotary inertia, which are significant for beams having large
cross-sectional dimensions, in comparison to their length, and also when higher
modes are important.
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APPENDIX: NOMENCLATURE

D=denominator in the expressions of N1, N2, N3 and N4 (shape functions)
Hfy (x)=EI(x); flexural rigidity

Hfy =assumed constant average value of Hfy (x), calculated in the middle of the
member (or element)

[K]= static stiffness matrix obtained by the finite element method
[KDS ]=overall dynamic stiffness matrix obtained by the DFE method
[Kr

DS ]=upper triangular matrix obtained from [KDS ]
[KDS ]k =DFE stiffness matrix
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[KDS ]kAverage =first part of [KDS ] corresponding to the uniform assumed beam element
[KDS ]kDEV =deviatoric part of [KDS ]k

(KDSij )k
DEV =components of [KDS ]k; i, j=1, 2, 3, 4
L=total length of the beam

[M]= static mass matrix obtained by the finite element method
NE=total number of elements

T(x)= centrifugal force acting along the beam
T=(fx2

x1
T(x) dx)/(x2 − x1); assumed constant average value of T(x)

Tk =V2 flk
x mk (x0 + xk + x) dx+Tk−1(0); centrifugal force corresponding to the

element k
WINT =internal virtual work
WEXT =external virtual work

Wk =discretized internal virtual work corresponding to element k
Wk

ND =non-dimensionalized form of Wk

l�k = lk /L; non-dimensionalized length of element k
m(x)= rA(x); mass per unit length

mr =reference value of m(x); usually chosen as m(x) at one end of the beam
(here, at the x=0)

m=assumed constant average value of m(x), calculated in the middle of the
member (or element)

m̄=m/mr; non-dimensionalized form of m
w=displacement in the plane of vibration
xk =distance of the element k from the centre of rotation
x̄k = xk /L; non-dimensionalized xk

j= x/lk ; elementary local coordinate, 0E jE 1
gk =EIk /EIr ; non-dimensionalized form of EIk

l2 =mrV
2L4/(EIr ); non-dimensionalized form of V2

m2 =mrv̂
2L4/(EIr ); non-dimensionalized form of v̂2

V=rotating speed of the beam
v=rotary frequency
v̂2 =v2 +V2 sin2 u
tk =Tk /(mrV

2L2); non-dimensionalized form of Tk

Indices

(G)'= 1G/1x or 1G/1j
(G� )= 1G/1t
(G�)=non-dimensionalized parameter

(G),x = 1G/1x
(G)k =parameter corresponding to the element k
(G)r =reference parameter, here calculated for the cantilevered end
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